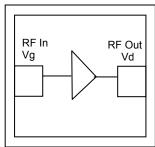
Rev. 1.0 January 2008



0.5 – 4.0 GHz Broadband Low Noise Amplifier

Features

- Frequency Range: 0.5 4 GHz
- ◆ 1.8 dB Mid-band Noise Figure
- ◆ 12.5 dB Nominal Gain
- Very Low operating current (2V/15mA)
- ◆ Ideal Replacement for discrete devices
- 10dBm Nominal P1dB
- ◆ Input Return Loss > 10 dB
- Output Return Loss > 12 dB
- ◆ 0.15-um InGaAs pHEMT Technology
- Chip Size: 0.96 mm x 1.1 mm x 0.1 mm

Functional Diagram

Typical Applications

- Cellular system
- Base stations
- Narrow Band Applications
- Communication receivers and transmitters.

Description

The AMT2122083 broadband MMIC LNA operates from 0.5-4 GHz. The MMIC employs a single stage amplifier design featuring 50 Ohm input/output impedance. The LNA features 12.5dB of nominal gain and has a typical mid-band noise figure of 1.8 dB. The LNA has Input return loss better than 10dB and an output return loss better than 12dB throughout the operating band. The LNA consumes a low current of 15 mA and delivers a nominal P1dB of 10dBm at 2V operation. In addition to being used as the first stage, the LNA's excellent linearity encourages its usage in the succeeding stages of a receiver chain. The die is fabricated using a reliable and standard Low noise 0.15um InGaAs pHEMT process. The circuit grounds are provided through vias to the

Absolute Maximum Ratings (1)

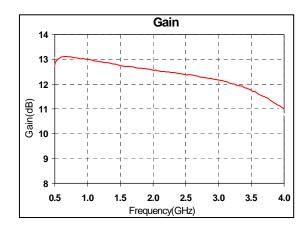
Parameter	Absolute Maximum	Units	
Positive DC Supply	6	V	
RF Input Power	20	dBm	
Supply current	120	mA	
Operating Temperature	-55 to +85	°C	
Storage Temperature	-65 to +150	°C	

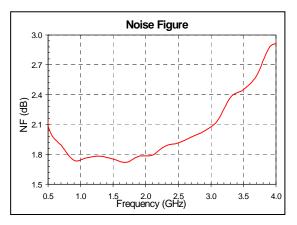
^{1.} Operation beyond these limits may cause permanent damage to the component

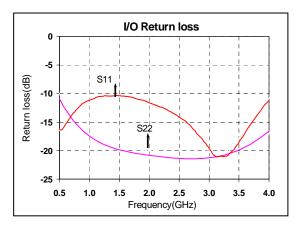
Electrical Specifications $^{(1)}$ @ T_A = 25 $^{\circ}$ C, V_{dd} = +2V, Z_o =50 Ω

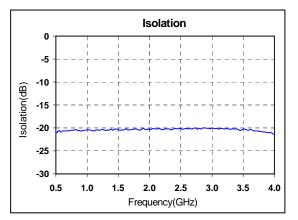
Parameter	Min.	Тур.	Max.	Units
Frequency	0.5	-	4.0	GHz
Gain	-	12.5	-	dB
Noise Figure (mid-band)	-	1.8	-	dB
Input Return Loss	-	10	-	dB
Output Return Loss	-	15	-	dB
Output Power (P1dB)	-	10	-	dBm
Output Third Order Intercept(IP3)	-	18	-	dBm
Supply Voltage		2		V
Supply Current	-	15	-	mA

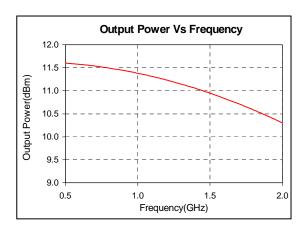
Note:

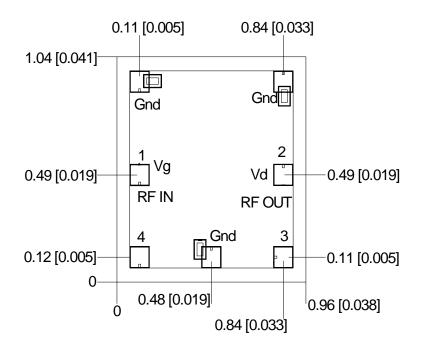

1. Electrical specifications as measured in test fixture.


Rev. 1.0 January 2008




Test fixture data


 V_d = 2V, V_g = -0.5V, Total Current = 15mA, T_A = 25 °C



Mechanical Characteristics

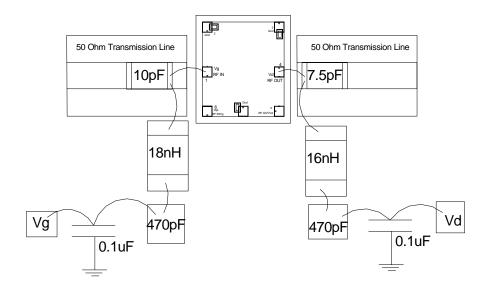
Units: millimeters (inches)

Note:

1. All RF and DC bond pads are $100\mu m \times 100\mu m$

2. Pad no. 1: RF In & Vg

3. Pad no. 2: RF Out & Vd


4. Pad no. 3: Optional Vd & RF Out

5. Pad no. 4: Optional Vg & RF In

Rev. 1.0 January 2008

Recommended Assembly Diagram

Note:

- One 1 mil (0.0254mm) bond wire of minimum length should be used for RF input and Output.
- 0.1uF capacitor may be additionally used as second level of bypass for reliable operation.
- 3. The inductors shown in the assembly are Coilcraft chip inductors. The preferred size is 0402. To enhance RF performance above 2 GHz, use of air-core inductors is advised.
- 4. The capacitors shown in the assembly diagram are Multilayer capacitors; the recommended size is 0402.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200µm length of wedge bonds is advised. Single Ball bonds of 250-300µm though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice